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DEVIATION OF THERMAL ANEMOMETER SENSORS WITH SAGGING WIRES 

FROM THE COSINE LAW 

I. L. Povkh, G. P. Eremln, 
and A. M. Novikov 

UDC 533.6.08 

The authors describe a calculation method and determine numerical values for the 
influence of the sag of the measuring wire of a thermal anemometer sensor on the 
deviation from a cosine law. 

In determining the absolute magnitude of the velocity vector in three-dimenslonal flows 
using thermal anemometer sensor wires one measures the magntiude of the effective component 
of the flow velocity, which influences the heat tranfer between the wire and the flow. These 
quantities are related by the cosine law [i]: 

Y~ = V c o s &  ( l )  

When one allows for the influence of the longitudinal velocity component on the heat 
transfer the cosine law takes the form [i] 

V~ = V (cos 2 6 + k 2 sin 2 6) ~/~ . ( 2 )  

These relations are derived on the assumption that the measuring wire of the thermal anemometer 
sensor is straight. However, this condition does not hold in actual sensors. The deviation 
of the measuring wire from the straight condition stems from technical causes in the sensor 
manufacture, and also from the linear thermal expansion of the wire. 

We now derive the relation between the magnitudes of the effective component and the flow 
velocity vector for the case of a sagging wire, when the wire forms the arc of a circle. The 
effective component of the velocity vector in the segment of arc QP of the measuring wire DQA 
(Fig. i) varies from V61 to V6~. The area of the figure FTQP is 

Using the notation 

we obtain 

SFTQP = SOFT - -  SOPQ. (3) 

o p  = O Q  = r, (4) 

PF =Vst, 
6~ 52 62 

SFTQ p = 1_~ (F qU Vat)2 d6 -- i rZd6 ----- rV~ q- T V~lz dS. 
2 2 j 

6, 5, 5~ 

The average value of the integrand is determined by the relation [2] 

(5) 

(6) 

, i8o S( 1 )  
.c. (~--60a -~ 

5~ 

(7) 

Denoting the right side of Eq. (7) by I, we finally obtain 
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Fig. 1. Basic relative positions of the flow velocity vector 
and the measuring wire of the thermal anemometer for various 

/- 
angles ~ and 9, if: a) ~(p/2, ~ >~ 90~ --(9/2 b) ~/2< ~ 
90 ~ --q~/2; c) 90 Q --q)12 < a < (9 /2 ;  d) ot < 90 ~ -- q~12, ~ < q~12. 

V6av= (-- rt + Vr2t2 § 2It) t -2. (8) 

We take the absolute value of the mean effective component of the velocity vector for a 
curved measuring wire to be the absolute magnitude of the effective component of the velocity 
vector for a straight measuring wire of the same length, if the heat transmitted by the two 
wires is the same. For the basic cases of relative position of the flow velocity vector and 
the measuring wire (Fig. 1), the quantity I is determined by the following expressions: 

{ (oj'a']/1 1 5 - d5 ~a~ 1 k2) sin2 5 db) -{ - 
1 80 

I t -- Vt 1" - -  ( - -  k2) sin~ q- ,t' I / ' 1 -  ( - -  
(P~ o 

+ V t  [(5~+52)~ 1 ]} (9) 180 (kZ-t- 1)--(sin25iq-sin262) k2-- 
2 

12=- --180 Vt r i' v ' l - - ( 1 - - k Z )  s i n 2 5 d b +  Vt [(5~--53)~[ 1-8-0 . ( k 2 - I - 1 ) - - ( s i n 2 5 ~ - - s i n 2 5 3 ) ~ - -  (10)  

13 = 18_0_0 Vt {r V,--(,--k~)~in~bdb+ f Vl--(1--kDsin~d5+ .I 1/1-- (1-- kD sin~ 5 d6 + 
qon o oo 

+ Vt [ (5~ + 5s-~ 57--90) z~ kZ- -1 ]}  (ii) 180 (k~+ 1)--(sin255 + sin25~ + sin257) ~ , 

6~ 6,0 ] 
l a =  18__0 Vt {r ; V l  - -  (1-- ka) sin26-db-I - ~f Vl - - (1 - -k2)  sin~Sd6 4- 

~ 6, 90 

~ V t [  ( S s -  5 9 -  61~ + 90) ~ 1 8 0  (ka + 1 ) -  (sin 2 5 s -  sin 2&~-  sin 25~~ ]} ' (12) 

where 

5 , = = q -  (P'. - -90 ~ 
2 

52 = 90 ~ -- a -F ~~ 
2 

63 := 90 ~ -- a ~i 
2 

(la) 

(14) 

(15) 
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Fig. 2. Ratio of the effective component of the flow 
velocity vector to its absolute value V~/V as a func- 
tion of the angle of attack ~ (deg) for circular arc- 
shaped thermal anemometer wires with different central 
angles ~, and experimental results: i) for @ = 0~ 2) 
for ~ = 90 Q. 

6~=90 ~  5 ~i 
2 (16) 

6a = 90 ~ -{- (z (P~ 
2 

68 : ~ -~  q~" -- 90 ~ 
2 

(17) 

(18) 

67 = 90~  __  (z -}- (P~ 
2 

(19) 

6s = 90 ~ -- u ~" 
2 

6~ = 90 ~ ~-  (z ~P~ 
2 

(20) 

(21) 

(22) 
610 ==90~ + ~ 

2 

Since the sensitivity factor of the measuring wire has a value 0~k~_0.3, the integrals 
in Eqs. (9)-(12) are elliptic integrals of the second kind in Legendre form, for which numeri- 
cal values are given in [3]. 

As can be seen from the relations (Fig. 2) calculated from Eqs. (8)-(22), a large sag in 
the measuring wire of the thermal anemometer sensor leads to a considerable deviation from the 
cosine law and to a reduction in sensitivity~ which it is important to allow for in measuring 
the velocity vector of three-dimensional flows. A certain amount of discrepancy between the 
experimental results and the calculated curves (Fig. 2) can be explained by the deviation of 
the actual curved sensor wire from the arc of a circle. 

NOTATION 

V, absolute magnitude of the flow velocity vector; V~, absolute magnitude of the effective 
component of the flow velocity vector; u, angle of attack; ~, angle between the flow velocity 
vector and the normal to the wire; ~, %, ~ap central angle of an arc of a circle; r, radius 
of a circular arc; k, sensitivity factor of the sensor wire for the longitudinal velocity 
component; S, area of the geometrical contours; t, time. 
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DETERMINATION OF THE VELOCITY PROFILE OF A STREAM OF 

NON-NEWTONIAN FLUID 

K. B. Kann and V. N. Feklistov UDC 532.529.5+532.135 

We describe a method for determining the velocity profile from measured values of 
the flow rate in several pipes of various diameters. 

The velocity distribution of a fluid over the cross section of a stream can be found 
rather simply for a known law of flow, i.e., the dependence of the flow velocity on the shear 
stress. Non-Newtonian fluids differ widely in their theological behavior. The law of flow 
is an empirical relation which must be sought separately for each case. 

Kutateladze et el. [i] succeeded in separating a rather large subclass of non-Newtonian 
fluids whose theological behavior is fairly well described by the linear fluidity law 

= % (1 + ~ ) .  (1)  

Smol'skii et el. [2] proposed to plot the velocity profile by graphical integration of 
dw/dr = f(rR), which in turn can be obtained from the Mooney formula by graphical differentia- 
tion of the experimental curve of the flow rate as a function of the wall friction stress. 
The velocity profile for practically any non-Newtonian fluid can be obtained by this method, 
but it is ra~her complicated and not very accurate. 

The existing methods of measuring flow velocities (photokinetic, electrodiffusion, fluoro- 
scopic, etc.) are complicated both with respect to procedure and with respect to the apparatus 
us ed. 

We describe a simple method of plotting the velocity profile of the laminar flow of a 
fluid in a circular pipe. This method is based on the fact that for the same longitudinal 
pressure gradient the velocity curve in a channel of radius R~ has the same shape as the por- 
tion of the curve for r~R: in a larger pipe of radius R~ (Fig. l). This conclusion follows 
from p. 67 of [2]. 

If the mean flow velocities w i in N pipes of radii ri~R are measured for the same longi- 
tudinal pressure gradient, the piecewise linear approximation of the curve (Fig. 2) leads to 
the following relation for the velocity increment between the i-th and (i -- l)-th cross section 
of the profile: 

r~ + r~ri_l + r2 
i - - I  : 

or 

where 8i = ri/ri-:. 
given by the sum 

�9 -- 2 - -  

Then the true flow velocity w n at a distance r n from the pipe axis is 

(2) 

Siberian Branch, Institute of Thermophysics, Academy of 
sibirsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 
1982. Original article submitted March 26, 1981. 

Sciences of the USSR, Novo- 
42, No. 6, pp. 927-930, June, 

618 0022-0841/82/4206-0618507.50 �9 1982 Plenum Publishing Corporation 


